V. Nithyadevi and S. P. Rajendran*
Department of Chemistry, Bharathiar University, Coimbatore- 641046, TamilNadu, India. E-mail: rajendransp@yahoo.com, nithchem@rediffmail.com
Received August 18, 2005

Methyl-3-(2-chloroquinolin-3-yl)acrylates 5a-i on reaction with methyl amine in acetonitrile yielded methyl-3-[2-(methylamino)quinolin-3-yl]acrylates 6a-i. When, these were followed by the reaction with the Vilsmeier reagent, they afforded methyl benzo $[b][1,8]$ naphthyridin-3-carboxylate $7 \mathbf{a}-\mathbf{i}$ in good yields.
J. Heterocyclic Chem., 43, 755 (2006).

Several [1,8]naphthyridines and its derivatives are documented for their pharmacological properties exhibiting antibacterial, anti-fungal [1], anti-malarial, anti-hypertensive [2], anti-mycobacterial [3], anti-thrombic [4] activities.

Earlier, workers from our laboratory have reported the synthesis of 1,2,3,4-tetrahydrodibenzo $[b, g][1,8]$ naphthyridine [5] and 6-phenyl-1,2,3,4-tetrahydrodibenzo $[b, g]$ [1,8]naphthyridine [6] in good yields from 2-chloro-3formyl quinolines and 2-chloro-3-formyl-4-phenylquinolines respectively. Herein, we report a convenient method for the synthesis of hitherto unreported compounds methyl benzo $[b][1,8]$ naphthyridin-3-carboxylates 7a-i in good yields from methyl-3-(2-chloroquinolin-3yl)acrylates 5a-i.

With the aim at the synthesis of benzo fused [1,8]naphthyridines, we utilized 2-chloro-3-formyl quinolines 1a-i as the starting compounds, which were prepared by following O. Meth cohn procedure [7]. These were converted to the oxo compounds $2 \mathbf{a}-\mathbf{i}$ by refluxing with 4 M HCl . They were then condensed with malonic acid under the conditions of Knoevenagel reaction to furnish the acrylic acids [8] 3a-i.

Esterification of 3a-i in absolute methanol and concentrated sulphuric acid at reflux temperature for 5-6 hrs furnished methyl-3-(2-oxo-1,2-dihydroquinolin-3-yl)acrylates [9] 4a-I (Figure 1). The compound 4a upon dehydroxy chlorination with freshly distilled phosphorus oxychloride resulted in a creamy white compound. This was followed by recrystallisation from pet.ether: benzene (4:1 v / v) giving rise to needle shaped crystals.
The IR spectrum of the compound displayed bands for CO at $1709 \mathrm{~cm}^{-1},(-\mathrm{C}-\mathrm{Cl})$ at $1062 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra showed singlets at 8.16δ and 3.23δ for $\mathrm{C}_{4}-\mathrm{H}$ and CH_{3} of ester respectively, doublets for vinyl protons at $6.56 \delta, 7.82 \delta$ with $\mathrm{J}=16 \mathrm{~Hz}$ typical of the trans configuration and multiplet for $\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{H}$ at $7.61 \delta-7.88 \delta$ ppm . Its mass spectra with the m / e value at $247\left(\mathrm{M}^{+}\right)$and
$249(\mathrm{M}+2)$ (one third the intensity of the parent peak), confirmed the structure of the compound as methyl-3-(2-chloroquinolin-3-yl)acrylate 5a [10] (Table 1). The procedure was extended to synthesize $\mathbf{5 b} \mathbf{b} \mathbf{i}$.

The chloro esters 5a-i were then subjected to the sequencial steps involved in the synthesis of benzopyrano[4,3-b]-pyridine-5-ones by Heber et al [11].

Methyl-3-(2-chloroquinolin-3-yl)acrylates 5a-i were further converted into the dienamines 6a-i by a very slow treatment with two equivalents of the methyl amine in acetonitrile. For the vinyl protons, ${ }^{1} \mathrm{H}$ NMR spectroscopy showed doublets at $\delta=6.38-6.61 \mathrm{ppm}$ and $8.05-8.29 \mathrm{ppm}$ typical of trans configuration of the double bonds. The IR spectra of $\mathbf{6 a - i}$ displayed the absorption bands for a conjugated ester carbonyl at ($v=1705-1725 \mathrm{~cm}^{-1}$) and -NH group ($v=3345-3371 \mathrm{~cm}^{-1}$). The heterocyclisation of $\mathbf{6 a - i}$ occurred smoothly with an excess of Vilsmeier reagent (mole ratio 1:6), on a steam bath to give benzo fused $[1,8]$ naphthyridines in good yields. The structures of 7a-i were unambiguously deduced from IR, proton nmr, mass spectra and elemental analysis.

The mechanism for the heterocyclisation of $\mathbf{6 a - i}$ probably involves N -formylation of $\mathbf{6}$ to give the dimethyliminium salt (A), followed by the nucleophilic attack of the chloride ion on the N -alkyl moiety provoking simultaneous electrocyclic ring closure. The aromatization occurs by the elimination of dimethylamine, to give methyl benzo$[b][1,8]$ naphthyridin-3-carboxylates 7a-i (Figure- 2).

EXPERIMENTAL

Melting points were determined using Raaga mp apparatus and are uncorrected. The IR spectra were recorded on an FTIR 8201(PC)S spectrometer as KBr pellets and the absorption frequencies are expressed in reciprocal centimeter $\left(\mathrm{cm}^{-1}\right)$. Proton NMR spectra were recorded on a Gemini-200 MHz or on a Varian AMX 400 spectrometer in CDCl_{3}. The chemical shifts
were expressed in δ (PPM) downfield from tetramethylsilane as an internal standard. Elemental analysis was performed by Elementar Analyser Vario EL III and the values are within the permissible limits (± 0.4). The Mass spectra were recorded by EIMS technique on an Autospec mass spectrometer. The crude products were checked by thin layer chromatography and purified by column chromatography using silica gel (60-120 mesh).

Preparation of Methyl-3-(2-chloroquinolin-3-yl)acrylate 5a-i.
General Procudure.
The methyl ester 4 (0.0228 mole) was treated with freshly distilled phosphorus oxychloride ($13.6 \mathrm{ml}, 0.148$ mole) and kept on a steam bath for 5-6 hrs. On cooling and pouring into crushed ice, the compound separated as a creamy white solid. It was then
recrystallized from pet. ether:benzene $(4: 1 \mathrm{v} / \mathrm{v})$ and obtained as yellow coloured needles.

Preparation of methyl-3-[2-(methylamino)quinolin-3-yl]acrylates 6a-i.

General Procedure.
To a stirred mixture of methyl-3-(2-chloroquinolin-3yl)acrylate 5 (1 mmole) in acetonitrile $(5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$, a solution of the methyl amine (2.1 mmole) in acetonitrile was added slowly in drops over a period of one hour, followed by stirring, for about 3 hrs . The reaction was then suspended on a steam bath for 10 hrs . On cooling, the crystalline product was collected by filtration, washed successively with acetonitrile. An additional product was obtained by concentrating the fil-

5a-i
i) 4 M HCl ii) Malonic acid, pyridin, piperidine iii) abs.methanol, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ iv) POCl_{3} v) methyl amine in acetonitrile vi) $\mathrm{POCl}_{3} / \mathrm{DMF}$

6a-i

7a-i
a) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$; b) $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$; c) $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; d) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3} ;$ e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$;
f) $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3} ;$ g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OCH}_{3}$; h) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{H}$; i) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{3}=-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-$

Figure 1

Figure 2
trates under reduced pressure and recrystallised from absolute ethanol.

Table 1
Physical and Spectral Data of 5a-i

Compound	Yield (\%)	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	$\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$	Mass $(\mathrm{m} / \mathrm{z})$
$\mathbf{5 a}$	85	$220-221$	$1709,1263,1051$	247,249
$\mathbf{5 b}$	87	$120-121$	$1701,1262,1050$	261,263
$\mathbf{5 c}$	89	$144-145$	$1708,1261,1049$	261,263
$\mathbf{5 d}$	92	$130-131$	$1709,1260,1052$	261,263
$\mathbf{5 e}$	80	$170-171$	$1709,1265,1059$	277,279
$\mathbf{5 f}$	85	$165-166$	$1712,1267,1061$	277,279
$\mathbf{5 g}$	89	$159-160$	$1718,1269,1062$	277,279
$\mathbf{5 h}$	83	$260-261$	$1708,1260,1041$	275,277
$\mathbf{5 i}$	80	$205-206$	$1718,1266,1048$	297,299

Physical and Spectral Data of 6a-i.

Methyl-3-[2-(methylamino)quinolin-3-yl]acrylate (6a).
This compound was obtained as light yellowish crystals (ethanol); yield $=65 \%$; mp $=292-293{ }^{\circ} \mathrm{C}$; IR: CO $1715,1251 \mathrm{~cm}^{-1}$, NH $3345 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.32(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 3 \mathrm{H}$, NCH_{3}), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $6.41(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}$ trans), 7.51-7.91 (m, 4H, C $5, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{H}$), 7.98 (d, J=16Hz $\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), 8.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}$), 8.21 ($\mathrm{s}, \mathrm{br},-\mathrm{NH}$); ms: m/z 242 (M^{+})
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.40; $\mathrm{H}, 5.82 ; \mathrm{N}, 11.57$. Found: C, 69.10; H, 5.72; N, 11.47.
Methyl-3-[6-methyl-2-(methylamino)quinolin-3-yl] acrylate (6b).

This compound was obtained as light yellowish crystals (ethanol); yield $=63 \% ; \mathrm{mp}=273-274{ }^{\circ} \mathrm{C}$; IR: CO $1719,1256 \mathrm{~cm}^{-1}$, NH $3351 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.46\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.23$ (d, $\left.\mathrm{J}=5.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $6.46(\mathrm{~d}$, $\mathrm{J}=15.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), $7.53-8.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{H}\right), 8.06$ (d, J=15.8Hz, $-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), $8.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.21(\mathrm{~s}, \mathrm{br},-$ NH), ms: m/z $256\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $70.29 ; \mathrm{H}, 6.29 ; \mathrm{N}, 10.93$. Found: C, 70.20; H, 6.25; N, 10.90.
Methyl-3-[7-methyl-2-(methylamino)quinolin-3-yl] acrylate (6c).

This compound was obtained as light yellowish crystals (ethanol); yield $=67 \%$; mp $=284-285^{\circ} \mathrm{C}$; IR: CO $1716,1258 \mathrm{~cm}^{-1}$, NH $3349 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.19(\mathrm{~d}$, $\left.\mathrm{J}=5.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), \delta 3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $6.43(\mathrm{~d}$, $\mathrm{J}=15.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), $7.47-8.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}-\mathrm{H}\right)$, $8.05\left(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}\right), 8.20(\mathrm{~s}, \mathrm{br},-\mathrm{NH}), \mathrm{ms}: \mathrm{m} / \mathrm{z} 256$ $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 70.29; H, 6.29; $\mathrm{N}, 10.93$. Found: C, 70.20; H, 6.25; N, 10.90.

Methyl-3-[8-methyl-2-(methylamino)quinolin-3-yl] acrylate (6d)
This compound was obtained as light yellowish crystals (ethanol); yield $=69 \%$; $\mathrm{mp}=289-290^{\circ} \mathrm{C}$; IR: CO $1714,1257 \mathrm{~cm}^{-1}$, NH $3351 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.19(\mathrm{~d}$, $\left.\mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $6.40(\mathrm{~d}$, $\mathrm{J}=15.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), 7.43-8.11 (m, 4H, C $\left.4, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathrm{H}\right)$,
8.06 (d, J=15.8Hz, -CH=CH trans), 8.20 (s, br, -NH), ms: m/z 256 $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 70.29; H, 6.29; $\mathrm{N}, 10.93$. Found: C, 70.22; H, 6.21; N, 10.90.

Methyl-3-[6-methoxy-2-(methylamino)quinolin-3-yl] acrylate (6e).

This compound was obtained as light yellowish crystals (ethanol); yield $=63 \% ; \mathrm{mp}=278-279{ }^{\circ} \mathrm{C}$; IR: CO $1705,1252 \mathrm{~cm}^{-1}$,
NH $3345 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.25\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right)$, $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $3.61\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 6.47$ (d, J=16Hz, $\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), 7.49-8.19 (m, 4H, C $\left.4, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{H}\right), 8.16(\mathrm{~d}$, $\mathrm{J}=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), $8.49(\mathrm{~s}, \mathrm{br},-\mathrm{NH}), \mathrm{ms}: \mathrm{m} / \mathrm{z} 272\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.12; H, 5.85; N, 10.20.

Methyl-3-[7-methoxy-2-(methylamino)quinolin-3-yl] acrylate ($6 \mathbf{f}$).

This compound was obtained as light yellowish crystals (ethanol); yield $=65 \% ; \mathrm{mp}=281-282^{\circ} \mathrm{C}$; IR: CO 1706, $1250 \mathrm{~cm}^{-1}$, NH $3342 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)=3.27\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right)$, 3.43 (s, 3H, CH ${ }_{3}$ of ester), $3.64\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 6.48(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz},-$ $\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), 7.51-8.23 (m, 4H, C $\left.4, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}-\mathrm{H}\right), 8.19$ (d, J= $16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$, 8.51 (s, br, -NH), ms: m/z $272\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; $\mathrm{N}, 10.29$. Found: C, 66.13; H, 5.91; N, 10.22.
Methyl-3-[8-methoxy-2-(methylamino)quinolin-3-yl] acrylate (6 g).

This compound was obtained as light yellowish crystals (ethanol); yield $=65 \% ; \mathrm{mp}=295-296^{\circ} \mathrm{C}$; IR: CO $1701,1240 \mathrm{~cm}^{-1}$, NH $3341 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.30\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right)$, $3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), 3.67 (s, $3 \mathrm{H},-\mathrm{CH}_{3}$), $6.52(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), 7.59-8.30 (m, 4H, C $\left.4, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathrm{H}\right), 8.21(\mathrm{~s}, \mathrm{br}$, $\mathrm{NH}), 8.22\left(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}\right)$, ms: $\mathrm{m} / \mathrm{z} 272\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.14; H, 5.92; N, 10.26.

Methyl-3-[6,8-dimethyl-2-(methylamino)quinolin-3-yl] acrylate (6h).

This compound was obtained as light yellowish crystals (ethanol); yield $=65 \% ; \mathrm{mp}=301-302{ }^{\circ} \mathrm{C}$; IR: CO 1713, $1246 \mathrm{~cm}^{-1}$, NH $3353 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.35,2.43$ (s each, 3 H , CH_{3}), 3.23 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester), 3.09 (d, J=6Hz, $3 \mathrm{H},-\mathrm{NCH}_{3}$), 6.38 (d, J=16Hz, CH=CH ${ }_{\text {trans }}$), 7.41-8.03 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{7}-\mathrm{H}$), 8.07 (s, br, -NH), 8.12 (d, J=16Hz, $-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), ms: m/z 270 $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.09; $\mathrm{H}, 6.71 ; \mathrm{N}, 10.37$. Found: C, 71.01; H, 6.68; N, 10.30.

Methyl-3-[2-(methylamino)benzo[h]quinolin-3-yl] acrylate ($\mathbf{6 i}$).
This compound was obtained as yellow crystals (ethanol); yield $=60 \%$; mp $=309-310^{\circ} \mathrm{C}$; IR: CO $1725,1260 \mathrm{~cm}^{-1}$, NH $3371 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.26\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right)$, 3.33 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester), 6.61 (d, $\mathrm{J}=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), 8.29 (d, $\mathrm{J}=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\text {trans }}$), $7.56-9.31\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}\right.$, $\left.\mathrm{C}_{9}, \mathrm{C}_{10}-\mathrm{H}\right), 8.62(\mathrm{~s}, \mathrm{br},-\mathrm{NH}), \mathrm{ms}: \mathrm{m} / \mathrm{z} 292\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.95; H, 5.51; N, 9.59. Found: C, 73.91 ; H, 5.49; N, 9.52 .

Preparation of Methyl benzo[$b][1,8]$ naphthyridin-3-carboxylates 7a-i.

General Procedure.

To a stirred mixture of anhydrous DMF at $0{ }^{\circ} \mathrm{C}(1.85 \mathrm{ml})$, $\mathrm{POCl}_{3}(0.46 \mathrm{ml})(4.9 \mathrm{mmole})$ was added in drops for about half an hour. Stirring was continued for another hour, followed by the addition of $6(200 \mathrm{mg})$. The reaction was then carried out on a steam bath, till its completion over a period of 16 hrs. After cooling, the mixture was poured into ice water and the precipitate thus obtained was collected by filtration, washed with water, dried and recrystallised from ethanol.

Methyl benzo[b][1,8]naphthyridin-3-carboxylate (7a).
This compound was obtained as yellow crystals (ethanol); yield $=62 \% ; \mathrm{mp}=260-261^{\circ} \mathrm{C}$; IR: CO 1730, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 3.10 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester), 7.57-8.05 (m, 4H, C $6, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-\mathrm{H}$), $8.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 8.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right)$, ms: m/z $238\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 70.58; $\mathrm{H}, 4.23$; $\mathrm{N}, 11.76$. Found: C, $70.50 \mathrm{H}, 4.19$; N, 11.72.

Methyl-7-methylbenzo[b][1,8]naphthyridin-3-carboxylate (7b).
This compound was obtained as yellow crystals (ethanol); yield $=62 \% ; \mathrm{mp}=248-249{ }^{\circ} \mathrm{C}$; IR: CO 1729, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $2.51\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $7.63(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $\left.\mathrm{C}_{8}-\mathrm{H}\right), 7.83\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, \mathrm{C}_{9}-\mathrm{H}\right), 8.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.43(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 8.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 9.02\left(\mathrm{~s}, \mathrm{IH}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.41; H, 4.79; N, 11.11. Found: C, 71.38; H, 4.73; N, 11.10.

Methyl-8-methylbenzo $[b][1,8]$ naphthyridin-3-carboxylate (7c).
This compound was obtained as yellow crystals (ethanol); yield $=64 \%$; mp $=254-255^{\circ} \mathrm{C}$; IR: CO 1727, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ $2.49\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.08$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester), 7.53-8.78 (m, 3 H , $\left.\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{9}-\mathrm{H}\right), 8.45\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 8.67$ (s , $\left.1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 9.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.41; $\mathrm{H}, 4.79 ; \mathrm{N}, 11.11$. Found: C, 71.37; H, 4.72; N, 11.09.

Methyl-9-methylbenzo[$b][1,8]$ naphthyridin-3-carboxylate (7d).
This compound was obtained as yellow crystals (ethanol); yield $=66 \%$; mp $=263-264^{\circ} \mathrm{C}$; IR: CO 1719, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $2.52\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), $7.54-8.83(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{H}\right) 8.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 8.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.55(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5}-\mathrm{H}\right), 9.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.41; $\mathrm{H}, 4.79 ; \mathrm{N}, 11.11$. Found: C, 71.33; H, 4.70; N, 11.06.

Methyl-7-methoxybenzo[b][1,8]naphthyridin-3-carboxylate (7e).
This compound was obtained as yellow crystals (ethanol); yield $=62 \% ; \mathrm{mp}=251-252{ }^{\circ} \mathrm{C}$; IR:CO $1732,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $3.16\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ester), $3.96\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 7.70-8.78$ (m, $\left.\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{9}-\mathrm{H}\right), 8.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 9.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $268\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.15; H, 4.51; N, 10.44. Found: C, 67.10; H, 4.49; N, 10.40
Methyl- 8-methoxybenzo $[b][1,8]$ naphthyridin-3-carboxylate (7f).
This compound was obtained as yellow crystals (ethanol); yield $=62 \% ; \mathrm{mp}=258-259^{\circ} \mathrm{C}$; IR: CO 1720, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 3.19 (s, 3H, -CH of ester), $3.86\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 7.59-8.91$ (m , $\left.5 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{9}-\mathrm{H}\right), 9.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 268\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.15; H, 4.51; N, 10.44. Found: C, 67.14; H, 4.49; N, 10.41
Methyl-9-methoxybenzo[b][1,8]naphthyridin-3-carboxylate (7g).

This compound was obtained as yellow crystals (ethanol); yield $=60 \%$; mp $=264-265^{\circ} \mathrm{C}$; IR: CO 1720, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ 3.21 (s, $3 \mathrm{H},-\mathrm{CH}_{3}$ of ester), $3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 7.59-8.95$ (m, $\left.5 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-\mathrm{H}\right), 9.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 268\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.15; H, 4.51; N, 10.44.
Found: C, 67.10; H, 4.49; N, 10.40
Methyl-6,8-dimethylbenzo[b][1,8]naphthyridin-3-carboxylate (7h).
This compound was obtained as yellow crystals (ethanol); yield $=60 \% ; \mathrm{mp}=270-271^{\circ} \mathrm{C}$; IR: CO 1728, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 2.40, 2.51 (s each, $3 \mathrm{H},-\mathrm{CH}_{3}$), 3.11 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$ of ester), 7.41-8.82 (m, 5H, C $\left.{ }_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}-\mathrm{H}\right), 8.3\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 266\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.16; $\mathrm{H}, 5.30 ; \mathrm{N}, 10.52$. Found: C, 72.11; H, 5.28; N, 10.49.

Methyl Benzo[g]naphtho $[b][1,8]$ naphthyridin-3-carboxylate (7i).
This compound was obtained as yellow crystals (ethanol); yield $=60 \% ; \mathrm{mp}=309-310^{\circ} \mathrm{C}$; IR:CO 1735, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $3.21\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of ester), 7.62-9.16 (m, 8H, C $4, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$, $\left.\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}-\mathrm{H}\right), \mathrm{ms}: \mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.99; H, 4.20; N, 9.72. Found: C, 74.90; H, 4.19; N, 9.69.

Acknowledgement
We wish to thank Bharathiar University for the award of URF to one of us (V.N.). We also thank the ser- vices rendered by the Dept of Chemistry-Bharathiar Uni- versity at Coimbatore, IICT at Hyderabad and Sophisticated Instumentation facility at IISc Bangalore for recording elemental analysis, proton nmr, ir and mass spectra.

REFERENCES AND NOTES

[1] P. A. Lowe, Comprehensive Heterocyclic Chemistry ., Vol II (Ed. by A.R. Katritzky and C.W. Rees) Pergam- on press Ltd., Oxford, Newyork, 581-627 (1984).
[2] P. L. Ferrarini, C. Mori, M. Badwneh, V. Calderone, L. Calzolari, T. Loffredo, E. Martinotti and G. Saccoma- nni, Eur. J. Med. Chem., 33, 383 (1998).
[3] P. L. Ferrani, C. Manera, C. Mori, M. Badwneh, and G. Saccomanni, Il Farmac., 53, 741 (1998).
[4] F. Tonetti, D. Bertini, P. L. Ferrarini, O. Livi and M. Del Tacca., Farmaco Ed. Sci., 31, 175 (1976).
[5] G. Arul Prakash and S. P. Rajendran, Heterocyclic Communications., 6, No.1, 63 (2000).
[6] G. Arul Prakesh and S. P. Rajendran, Orient. J. Chem., 19, 173 (2003).
[7] O. Meth. Cohn, B. Narine and B. Tarnowski, J. Chem. Soc., Perkin Trans I., 1520 (1981).
[8] T. Tilakraj and Sarvottam. Y. Ambekar, J. Indian. Chem. Soc., Vol LXII, 251 (1985).
[9] V. Nithyadevi, S. Mohanapriya and S. P. Rajendran, Heterocycl. Comm., 10, 339 (2004).
[10] V. Nithyadevi, P. Selvi and S. P. Rajendran, Phosphorus, Sulphur Silicon and Rel. Elem., 179, 2355 (2004).
[11] D. Heber, I. C. Ivanov and S. K. Karagiosov, J. Heterocyclic Chem., 32, 505 (1995).

